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Integrality of open instantons numbers
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Abstract

We prove the integrality of the open instanton numbers in two examples of counting holomorphic
disks on local Calabi–Yau three-folds: the resolved conifold and the degenerateP1 × P1. Given the
B-model superpotential, we extract by hand all Gromow–Witten invariants in the expansion of the
A-model superpotential. The proof of their integrality relies on enticing congruences of binomial
coefficients modulo powers of a prime. We also derive an expression for the factorial(pk − 1)!
modulo powers of the primep. We generalise two theorems of elementary number theory, by
Wolstenholme and Wilson.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Open string instantons are holomorphic maps from Riemann surfaces with boundaries
to theCY3 target space. It is understood that the boundaries of the instanton end on special
Lagrangian submanifolds of the three-fold. In other words, we are interested in the problem
of counting holomorphic disks with boundary on a Lagrangian submanifold.

Aganagic and Vafa[1] used Mirror Symmetry to determine these open string instantons:
the B-model superpotential can be computed exactly and mapped to the A-model super-
potential in the large volume limit of theCY3. The latter cannot be computed exactly, but
contains instanton corrections, i.e. holomorphic disks ending on “A-model branes” (also
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called A-branes); comparison with the B-model superpotential allow us to determine the
contribution of these instantons and their degeneracy.

The disk amplitude in the large volume limit (i.e. ev → 0), which—in the type II
context—has the interpretation of superpotential corrections to 4d N = 1 susy, is expected
to be of the form[2] (A-model superpotential):

WA =
∑
n≥1
k,m

dk,m

n2
qnkynm, (1)

whereq = e−t andy = ev are the (exponentiated) closed and open string complexified
Kähler classes, measuring respectively the volume of compact curves and holomorphic disks
embedded in the three-fold. The coefficientsdk,m are the numbers of primitive holomorphic
disks labelled by the classesk andm—two vectors in the homologiesH2 of the three-fold
andH1 of the brane respectively.

The tables given in[1] exhibit the integrality of the coefficientsdk,m for their two examples
of three-folds: the resolved conifold and the degenerateP1 × P1. The current paper proves
this for allk,m by analytic means. We first Fourier expand the B-model superpotential[1] in
q andy and equate it to(1), then we prove the integrality ofdk,m by proceeding inductively
on the greatest common divisor ofk andm. We derive interesting congruences of binomial
coefficients modulo powers of a prime.

This explicit method is only possible due to the simple nature of the mirror map: forP1

(both examples), the relation betweent andt̂ is rational:q = q̂/(1 + q̂)2.
The first four sections are a reminder of the method used in[1]; it rests on the equivalence

of the A- and B-model under mirror symmetry. On one hand, the A-model string amplitude
is re-interpreted in topological string theory as counting holomorphic maps from Riemann
surfaces (with boundary) to the target space; on the other hand, the B-model amplitude is
obtained via Chern–Simons reduction to the world-volume of the B-brane.

The last two sections and the mathematicalAppendix A are the crux of the paper: we
prove the integrality of the open instanton numbers in the examples of the resolved conifold
O(−1)×O(−1)→ P1 and of the degenerateP1 ×P1 (where oneP1 gets infinite volume).
Appendix A proves the following powerful congruences for a primep > 3 and integers
n, k, l:(

npl

kpl

)
≡
(

npl−1

kpl−1

)
modp3l, (pk − 1)!′ ≡ −1 modpl (k ≥ l).

These are generalisations of Wolstenholme’s and Wilson’s theorems, respectively.

2. The A-model

For the A-model, we consider aU(1) linear sigma model, i.e. a complex Kähler manifold
Y obtained by quotienting the hypersurface

LY :=
{
n∑
i=1

Qi|Φi|2 = r2
}

(2)
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of Cn by aU(1) subgroup of the isometry group ofCn. The chargesQi are integers, and if
they sum up to 0,Y is a complex(n − 1)-dimensional CY manifold (non-compact, as the
directions with negative charge are non-compact).

More generally, we viewCn as a torus fibrationT n → L, where the base is justRn

parametrised by the|Φi|. We can also consider a realk-dimensional subsetLY of L given
by (n − k) equations (2)for (n − k) sets of chargesQai , and then divide the fibration
by U(1)n−k to obtain a fibrationY = (T k → LY) which is a complexk-dimensional
non-compact CY manifold.

Note that the baseLY is a Lagrangian submanifold ofY : sinceL is given by fixing values
of the argumentsθi of the complex variablesΦi, the Kähler formω = ∑n

i=1 d|Φi|2 ∧ dθi
vanishes on it. The baseLY is our first example of a Dk-brane.

Other examples of Dk-branes are obtained by considering rational linear subspaces of
LY , i.e. submanifoldsDr ⊂ LY of real dimensionr ≤ k, given by(k − r) constraints

n∑
i=1

qαi |Φi|2 = cα (3)

with integersqαi , α = 1, . . . , k−r. Since the slope ofDr is rational, the(k−r)-dimensional
subspace of the fibreT k above any point ofDr and orthogonal—w.r.t.ω—to TpDr is itself
a torusT k−r. That is, we have a new Dk-brane given by the fibrationT k−r → Dr. As a
submanifold ofY , it is specialLagrangian iff

∑
i q
α
i = 0. All these special Lagrangian

submanifolds ofY are called A-branes.

3. The B-model

The mirror equation to(2) is
n∏
i=1

y
Qi
i = e−t , (4)

wheret := r + iθ is the complexified Kähler parameter, i.e. the Fayet–Iliopoulos termr of
(2) combined with theU(1) θ angle. Theyi are homogeneous coordinates forPn−1. When
LY is given by a set of(n− k) equations,(4) also consists of(n− k) equations for different
Kähler parametersta.

Note that(4) is not yet the equation of the mirror CY space. The B-model is a Landau–
Ginsburg theory with superpotential

W(yi) =
n∑
i=1

yi,

in which(n−k) of the complex variablesyi can be substituted by(4), leaving justk of them.
The mirror CY space is compact or not according to whether we add or not a gauge-invariant
superpotential termPG(φi) to the original theory. In the first case, the CY is given by an
orbifold of the hypersurfaceW(yi) = 0, thus(k − 2)-dimensional. In the second case,
it is given byW(yi) = xz, wherex, z are affine (and not projective!) coordinates giving
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rise to non-compact directions, thusk-dimensional. (Note that sometimes theyi variables
occurring inW(yi) are rescaled to new variablesỹi such that these appear with powers
different from 1.)

As for the B-brane, the mirror ofequation (3)is
n∏
i=1

y
qαi
i = εα e−cα, α = 1, . . . , k − r, (5)

as a subspace of the mirror CY. We have allowed a phaseεα to occur; in other words, we have
complexifiedcα. Thus the B-brane is a holomorphic submanifold of complex dimension
k − (k − r) = r, i.e. it is a D(2r)-brane, wherer was the real dimension of the base of the
A-brane.

4. Topological strings and Chern–Simons action

In order to extract instanton numbers from our description of A-branes and their mirror
B-branes, we need an alternative way of computing the B-model superpotential. We find sal-
vation in topological string theory, where the A-model string amplitude counts holomorphic
maps from Riemann surfaces with boundary to the target space with the boundary ending on
A-branes, while the B-model amplitude computes the holomorphic Chern–Simons action
reduced to the world-volume of the B-brane. Hence it only works for the CYthree-folds,
i.e. from now on we restrict tok = 3.

Since the A-model disk amplitude in the large volume limit computes corrections to
the 4d N = 1 superpotential, we can extract its instanton numbers from the B-model
superpotential, i.e. from the classical action

W =
∫
Y

Ω ∧ Tr

[
A∂̄A+ 2

3
A3
]

(6)

for a holomorphicU(N) gauge fieldA ∈ H0,1(Y,adjU(N)).
We shall be interested in the cases where the B-brane is a D2-brane, i.e. a holomorphic

curveC; that is the caser = 1 with r being the real dimension of the base of the A-brane.
Then the components of the gauge fieldA are holomorphic sections of the normal bundle
N(C), call thems, and the reduced Chern–Simons action is

W(C) =
∫
C
Ωijzs

i∂̄z̄s
j dzdz̄, (7)

which vanishes in the light of̄∂z̄sj(z) = 0. This is clearly unattractive for our purposes. A
way of obtaining a non-vanishing result is to consider the variation of the integral under
holomorphic deformations ofC. This wound not vanish if we have obstructions to holomor-
phic deformations, such as boundary conditions for the B-brane at infinity.

This requires a non-compact B-braneC, hence a non-compact mirror CY given by
{W(yi) = xz} for k = 3 homogeneous coordinatesyi. This equation reads{F(u, v) = xz}
for two affine complex variablesu, v, sayy1 = eu, y2 = ev. Sincer = 1, the B-brane
is given byk − 1 = 2 equations in the variablesyi, hence fixingW(yi) or F(u, v) to a
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constant value. If this value is 0, the B-brane will split into two submanifolds{x = 0} and
{z = 0} and hence deformations will be obstructed (as otherwise the brane would pick up
a boundary) and the B-model superpotentialW(C) will not vanish, as desired.

Note that we can similarly obtain configurations where the A-brane will split into two:
for instance, a chargeq = (1,−1,0, . . . ,0) restricts the Lagrangian submanifoldLY to
{|Φ1|2 − |Φ2|2 = c} and for vanishingc the A-brane will enter a phase where it splits into
{Φ1 = Φ2} and{Φ1 = −Φ2}.

To finish off the computation of the B-model Chern–Simons action, we fix the values
of one of the affine parametersu, v of the B-brane at infinity to some constant value (say
v → v∗ for large |z|). This parameterv measures, on the A-model side, the size of the
holomorphic disk ending on the brane. We then chooseu andv as the two sections of the
normal bundleN(C). C itself is parametrised byz, and the last variablex parametrising the
B-brane is set to 0. We write the holomorphic three-form asΩ = dudvdz/z and obtain for
the above integral:

W(C) =
∫
C

dz

z
u∂̄z̄vdz̄ =

∫ v

v∗
udv.

This has the form of an Abel–Jacobi map for the one-formudv on the Riemann surface
F(u, v) = 0, each point of which parametrises a different B-braneC.

Thus, comparing the A- and B-models:

∂vWB = u = · · · {F(u, v) = 0} · · · !=∂v

∑
n≥1

∑
k,m

dk,m

n2
(e−t)nk(ev)nm


 = ∂vWA,

and the dots mean that we solveF(u, v) = 0 for u to obtain an expression dependent onv
and—through(4)—on e−t .

5. Appreciation of the AV method

The method of[1] is quite powerful, as it only requires knowledge of the mirror CY
(specifically of the mirror superpotentialW(yi) or F(u, v)) to extract A-model instanton
numbers. Indeed, the result of the B-model Chern–Simons action (∂vWB = u) is indepen-
dent of the mirror CY or the mirror B-brane.

The drawback is that it is not clear how the instanton numbers depend on the choice of
A-branes. Would different chargesqα yield different instantons numbers? In their examples,
the choices ofqα yield convenient A- and B-branes. Maybe a different choice would not
allow for several phases in which the brane splits, or would not allow us to identify one of
the variablesu, v with the size of disk instantons. It seems that given a mirror CY (or even
the A-model CY for that matter), there is a unique choice of A-brane for which we can
compute A-model instantons.

Another constraint of the method is that it only works fork = 3, as it relies on the
Chern–Simons theory for the B-model topological string, which presupposes three-folds as
target spaces.
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6. Example: the resolved conifold

We now turn to a non-compact example ofCY3, namely the resolved conifold:O(−1)×
O(−1) → P1, a rank two concave bundle over the complex line.H2 of the CY3 is thus
H2(P1) = Z, while the A-brane is a Lagrangian submanifold cutting the baseP1 in a circle
S1, andH1(S

1) = Z. Thus bothk andm are merely integers andt, v merely complex
numbers. The input from the B-model is an explicit expression for the derivative of the
superpotential[1]:

∂vW = log

(
1 − ev

2
+ 1

2

√
(1 − ev)2 + 4e−t+v

)
=log

(
1 − y

2
+ 1

2

√
(1 − y)2 + 4qy

)

=
∑

k≥0,m≥k

(−1)k+1

m+ k

(
m+ k
k

)(
m

k

)
qkym

:=
∑

k≥0,m≥k
Ck,mq

kym withC0,0 = 0, (8)

wherev is the (rescaled) natural variable in the phase where the mirror B-brane degenerates
to two submanifolds passing through the south pole of the resolved conifold. Thisv also
measures the size of the minimal holomorphic disk passing through the south pole and
ending on the Lagrangian submanifold. Precisely when the submanifold splits into several
components can we wrap the A-brane around any of those, and guarantee that it will not
deform (as it would otherwise acquire a boundary). This phase is characterised by ev → 0,
agreeing with the large volume limit on the A-model side.

To detail how we arrived at the Taylor expansion of(8) in the large volume limit ev → 0,
it is best to differentiate both sides w.r.t.q and seta := 1 + 4qy/(1 − y)2:

2y

(1 − y)2
1

a+ √
a

= 2y

(1 − y)2
(

1√
a

− 1

)
1

1 − a = −1

2q

(
1√
a

− 1

)

= −1

2q

∑
k≥1

(−1
2
k

)(
4qy

(1 − y)2
)k

= −1

2q

∑
k≥1

qk(−1)k2

(
2k − 1

k

)∑
i≥0

(
2k + i− 1

i

)
yi+k

=
∑

k≥0,m≥k
qkym(−1)k

(
2k + 1

k

)(
m+ k
2k + 1

)

=
∑

k≥0,m≥k
qkym(−1)k

(
m

k + 1

)(
m+ k
k

)
.

And this agrees with the above:

Ck,m = (−1)k+1

k

(
m+ k − 1

k − 1

)(
m

k

)
= (−1)k+1

m+ k

(
m+ k
k

)(
m

k

)
. (9)
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As far as the constant of integration is concerned (theq0 term of(8)), note that
∑
m≥0C0,my

m

= ∑
m≥1 −ym/m = log(1 − y), in agreement with the first expression of(8) which goes

like log(1 − y + O(q)) = log(1 − y)+ O(q).
Comparing this to the A-model expression(1)

∂vW = −
∑
k,m

mdk,m log(1 − qkym) =
∑
k,m


 ∑
l|(k,m)

dk/l,m/l
m

l2


 qkym,

we can recursively extract the values of alldk,m from the relation

Ck,m =
∑
l|(k,m)

dk/l,m/l
m

l2
. (10)

Proposition 1. With theCk,m as in(9), the instanton numbersdk,m are all integers.

Proof. We proceed step by step, according to the greatest common divisor (gcd) ofk and
m:

• (k,m) = 1: From(10) we haveCk,m = dk,mm. So fordk,m to be integer, we needCk,m
to be 0 modm. Note that in general,(n, k) = 1 implies

n

∣∣∣∣∣
(
n

k

)
,

since(
n

k

)
= n

k

(
n− 1

k − 1

)
.

ThusCk,m ∈ Z and even∈ mZ.
• (k,m) = pl: Forp prime. This time

Ck,m = dk,mm+ dk/p,m/p m
p2

+ · · · + dk/pl,m/pl
m

p2l
= dk,mm+ 1

p
Ck/p,m/p.

Thus fordk,m to be integer, we needCk,m ≡ (1/p)Ck/p,m/pmodm, i.e. pCplk,plm ≡
Cpl−1k,pl−1mmodmpl+1 for (k,m) = 1, i.e.(

pl(m+ k)
plk

)(
plm

plk

)
−
(
pl−1(m+ k)
pl−1k

)(
pl−1m

pl−1k

)
≡ 0 modmp2l.

Lemma A.1tells us that the congruence is valid modp3l (p > 3) or modp3l−1 (∀p),
hence also modp2l for any primep. Since

m

∣∣∣∣∣
(
plm

plk

)
,

both terms also contain a factor ofm, and the congruence is valid modmp2l.
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• (k,m) = pq: For primesp andq. Again by(10)we have

Ck,m = dk,mm+ dk/p,m/p m
p2

+ dk/q,m/q m
q2

+ dk/pq,m/pq
m

p2q2

= dk,mm+ 1

p
Ck/p,m/p + 1

q
Ck/q,m/q − 1

pq
Ck/pq,m/pq.

Thus we needpqCpqk,pqm− qCqk,qm − pCpk,pm + Ck,m ≡ 0 modmp2q2 for (k,m) = 1,
i.e. (

pq(m+ k)
pqk

)(
pqm

pqk

)
−
(
q(m+ k)

qk

)(
qm

qk

)
−
(
p(m+ k)

pk

)(
pm

pk

)

+
(
m+ k
k

)(
m

k

)
≡ 0 modmq2p2.

Again byLemma A.1, the first difference is 0 modp3 (p > 3, or modp2 ∀p), so is the
last difference, and we can factor outp2, hence alsoq2. As before, we can also take out
a factor ofm, and the whole line is thus 0 modmp2q2.

• (k,m) = pqr: For primesp, q andr. As before, the principle of inclusion and exclusion
yields the requirement

pqrCpqrk,pqrm − qrCqrk,qrm − prCprk,prm − pqCpqk,pqm+ rCrk,rm + qCqk,qm

+ pCpk,pm − Ck,m ≡ 0 modmp2q2r2

for (m, k) = 1. Reasoning as above and noting that the four pairs(pqrCpqrk,pqrm −
qrCqrk,qrm), (prCprk,prm− rCrk,rm), (pqCpqk,pqm− qCqk,qm) and(pCpk,pm−Ck,m) are all
0 modp2, we find that the requirement is met.

• (k,m) = plq: Forp, q prime. Now we have

Ck,m = dk,mm+ 1

p
Ck/p,m/p + 1

q
Ck/q,m/q − 1

pq
Ck/pq,m/pq,

so we are back at a combination of the cases(k,m) = pl and(k,m) = pq, and the same
reasoning will show thatdk,m is again integer. �

Having covered the cases of(k,m) being product of primes and powers of primes, in-
ductive reasoning will show that the same conclusion will be met in the most general case

where(k,m) = pl11 . . . p
lj
j .

7. Example: degenerate P1 × P1

Our second example of non-compactCY3 is a concave line bundle over two complex
lines:O(−3)→ P1×P1, with Kähler modulit1, t2 describing the sizes of the two complex
lines (or real spheres). An easy mirror map is only known for the degenerate case where the
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size of the secondP1 goes to infinity; that is we retain only one modulus,t1, with associated
variableq = e−t1. And so—as in the previous example—k andm are both integers.

This time the input from the B-model is[1]:

∂vW = log

(
1 + q− y

2
+ 1

2

√
(1 + q− y)2 − 4q

)

=
∑

k≥0,m≥1

−1

m

(
m+ k − 1

k

)2

qkym =:
∑
k,m≥0

Ck,mq
kym withCk,0 = 0, (11)

wherev is the (rescaled) natural variable in the phase where the projection of the A-brane
on the base is a circle on theP1 of infinite volume. In order to understand the double series
expansion, we proceed as in the previous example, but now we differentiate both sides w.r.t.
y and obtain—up to a minus sign—something symmetric inq andy:

1√
(1 + q− y)2 − 4q

= 1√
(1 − q− y)2 − 4qy

= 1

1 + q− y
∑
n≥0

(
−1

2

n

)( −4q

(1 + q− y)2
)n

=
∑
n≥0

(
−1

2

n

)
(−4q)n

∑
i≥0

(
i+ 2n

i

)
(y − q)i

=
∑
m≥0

ym
∑
n≥0

(
−1

2

n

)
(−4q)n

∑
i≥0

(
m+ i+ 2n

m+ i

)(
m+ i
n

)
(−q)i

=
∑
m≥0

ym
∑
k≥0

qk(−1)k
k∑
n=0

(
−1

2

n

)
4n
(
m+ k + n
m+ k − n

)(
m+ k − n

m

)

=
∑
m≥0

ym
∑
k≥0

qk(−1)k
k∑
n=0

2(−1)n
(2n− 1)!

(n− 1)!n!

(m+ k + n)!
(2n)!m!(k − n)!

=
∑
m≥0

ym
∑
k≥0

qk(−1)k
(
m+ k
k

)
k∑
n=0

(−1)n
(
m+ k + n

n

)(
k

n

)

=
∑
m≥0

ym
∑
k≥0

qk

(
m+ k
k

)2

,

where we have used: the last sum overn is but the contribution to the powerxk in the
expansion of the product of(x − 1)k and(1/1 − x)m+k+1; and since this product equals
(−1)k(1 + x+ x2 + · · · )m+1, the sum equals

(−1)k
(
m+ k
k

)
.
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And this agrees with theCk,m above:1

Ck,m = − 1

m

(
m+ k − 1

k

)2

= −1

k

(
m+ k − 1

k

)(
m+ k − 1

k − 1

)

= − m

(m+ k)2
(
m+ k
m

)2

, (12)

of which only the last version is suitable for the casem = 0 : Ck,0 = 0. The latter yields
also the constant of integration (they0 term of(11)), since

∑
k≥0Ck,0q

k = 0, in agreement
with the first expression of(8) which goes like log((1 + q− y)/2 + (1 − q)/2 + O(y)) =
log(1 + O(y)) = O(y).

Proposition 2. With theCk,m as in(12), the instanton numbersdk,m are all integers.

Proof. The logic remains the same, and we proceed again inductively on the nature of the
gcd ofk andm:

• (k,m) = 1: As before, we needCk,m ≡ 0 modm, which is readily seen from(12).
• (k,m) = pl: As before, the requirement boils down topCplk,plm ≡ Cpl−1k,pl−1mmodmpl

for (k,m) = 1, i.e.

m

(m+ k)2


( pl(m+ k)

plm

)2

−
(
pl−1(m+ k)
pl−1m

)2

 ≡ 0 modmp2l,

i.e. (
pl(m+ k)
plm

)
≡ ±

(
pl−1(m+ k)
pl−1m

)
≡ 0 modp2l,

which is again fine byLemma A.1.
• (k,m) = pq: The same requirement as in(11)stipulates(

pq(m+ k)
pqk

)2

−
(
q(m+ k)

qk

)2

−
(
p(m+ k)

pk

)2

+
(
m+ k
k

)2

≡ 0 modq2p2

for (k,m) = 1. Again, byLemma A.1, the first difference is 0 modp3, so is the second,
and similarly for modq3.

1 Note that in[1], theCk,m have the following form:

Ck,m = (−1)k+1

m+ k

(
m+ k
k

)
+

k∑
n=1

(−1)k+n+1

m+ k + n
(m+ k + n)!
n!n!m!(k − n)! ,

where the first term is just then = 0 term of the sum next to it and is the coefficient in the expansion of log(1+q−y),
so that the expression agrees with our own one.
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The cases(k,m) = pqr and(k,m) = plq can be imported without change from the
previous example, and thus the integrality of thedk,m is proved for the most general case

of (k,m) = pl11 . . . p
lj
j . �
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Appendix A

We now prove a lemma from number theory, involving congruences of binomial coeffi-
cients.

Lemma A.1. For p prime andn, k ∈ N we have(
npl

kpl

)
≡
(

npl−1

kpl−1

)
modp3l forp > 3 (andmodp3l−1∀p).

Proof. We use the notation
∏′
,
∑′ for a product or a sum skipping multiples ofp, and

we defineS(n) := ∑′n
i=1 1/i andS2(n) := ∑′n

i=1 1/i2. Note also that all non-multiples of
p have an inverse, i.e. that(Z/plZ)∗ is a multiplicative group. We have

kpl∏
i=1

′
(
1 + kpl

i

)
=
∏ ′ kpl + i

i

kpl − i
i

=
∏ ′

(
1 − k2p2l

i2

)
≡1 + k2p2lS2(kpl)modp4l,

except for an extra minus sign for the second line ifp = 2, l = 1, k odd. The LHS
is 1 + S(kpl)kpl − ((S2(kpl) − S2(kpl))/2)k2p2l modp3l. Comparing both sides
modp2l, we find thatS(kpl) ≡ 0 modpl. Comparing modp3l yields kS(kpl) + (k2/2)S2
(kpl)pl ≡ 0 modp2l; and usingS2(kpl) ≡ 0 modpl (p > 3) from Lemma A.2, we
obtain

S(kpl) ≡ 0 modp2l for p > 3,

while only modp2l−1 for p = 3, and modp2l−2 for p = 2 (as the coefficient 1/2 takes
away one power ofp).

We now turn to the binomial coefficients: note first that they both have the same number
of multiples ofp, namely the number of multiples ofp lying in the interval [n − k, n] or
[k, n]—whichever interval is smaller. We assume that they actually do not contain multiples
of p, so that we can consider their quotient. If they do, their difference will contain even
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more powers ofp thanp3l, so that we could strengthen our result(
npl

kpl

)
(

npl−1

kpl−1

) = npl . . . ((n− k)pl + 1)

npl−1 · · · ((n− k)pl−1 + 1)

(kpl−1)!

(kpl)!

=
kpl∏
i=1

′ (n− k)pl+i
p−kpl−1

p−kpl−1

kpl − i=
∏ ′ (n− k)pl + i

i
=
∏ ′

(
1 + (n− k)pl

i

)

≡ 1 + pl(n− k)S(kpl)+p2l(n− k)2S
2(kpl)−S2(kpl)

2
modp3l

≡ 1 modp3l

by the above. �

As a special case of the lemma, forn = 2, k, l = 1, we obtain(
2p

p

)
≡ 2 modp3,

or Wolstenholme’s theorem.

Corollary A.1.(
2p− 1

p− 1

)
≡ 1 modp3 forp > 3 (andmodp2 ∀p).

Lemma A.2. For l, n ∈ N andp prime we have

Sn(p
l) :=

pl∑
i=1

′ 1

in
≡ 0 ≡

pl∑
i=1

′
inmodpl if (p− 1) � n,

and0 modpl−1 for anyp, n.

Proof. Note that the same is true ofSn(kpl) for k ∈ N, as this is merelyk copies (modpl)
of Sn(pl). Similarly, Sn(pl+1) is justp equal copies (modpl) of Sn(pl), so by induction,
we only need to prove the result forSn(p).

Let ζ be a primitive root modp, i.e. a number such that the set{1, ζ, ζ2, . . . , ζφ−1} covers
all elements of the multiplicative group(Z/pZ)∗ of orderφ(p) = p − 1. That is, the set
is equal (modp) to {1,2, . . . , p − 1}; and similarly the set{1,1/2n, . . . ,1/(p − 1)n}′ is
equal (modpl) to {1, ζn, ζ2n, . . . , ζn(p−2)}. Hence

Sn(p) ≡ 1 + ζn + · · · + ζn(p−2) = 1 − ζn(p−1)

1 − ζn ≡ 0 modp,
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sinceζp−1 ≡ 1 modp. For the denominator 1− ζn to be invertible modp, we must exclude
the case whereζn ≡ 1 modp, i.e. wheren is a multiple ofp− 1. In this case, it still is true
thatSn(p) ≡ 0 modp0, i.e. 0 mod 1.

For
∑′
in, the proof runs similarly. Note that in this case we could drop the dash from

the sum to include multiples ofp, as their contribution would bep(1 + 2 + · · · + pl−1) =
pl(pl−1 + 1)/2. �

One could have tackled the proof ofLemma A.1in other ways, in particular by writing
out the binomial coefficients as factorials and using properties of factorials. For the sake of
completeness, we include a useful property of residues of factorials (Wilson’s theorem).

Proposition A.1. For p prime we have

(p− 1)! ≡ −1 modp (p > 2),

and1 modp for p = 2.

Proof. In the product 1. . . (p−1), the numbers occur in pairsj and 1/jmodp, except for 1
andp−1 which are their own inverses, since these are the only solutions ofj2−1 ≡ 0 modp.
Thus the product is 1(p− 1) ≡ −1 modp. Forp = 2, 1 andp− 1 are equal modp. �

For higher powers of the primep, pk! contains a factor ofp1+p+p2+···+pk−1
. We intro-

duce the dash notation to indicate that we have skipped all these multiples ofp: pk!′ =
pk!/(pk−1!(p)p

k−1
). We compute the residue modp: (pk−1)!′ = (1 . . . pk−1 . . .2pk−1 . . .

ppk−1)′ consists ofp times (pk−1 − 1)!′ modp. By induction, this yields the following
lemma.

Lemma A.3. For p prime andk ∈ N we have

(pk − 1)!′ ≡ −1 modp (p > 2),

and1 modp for p = 2.

More generally, this result holds also modpl for powersk ≥ l, as we shall show below.

Lemma A.4. For p prime we have:

(pk−1 − 1)!′ ≡ (p− 1)!p
k−2 ≡ −1 + n1p

k−1 modpk (p > 2, k ≥ 2),

and≡ 1 + pkl−1 modpk for p = 2, k ≥ 4.
Here, n1 ∈ Zp is defined by(p− 1)! ≡ −1 + n1pmodp2(p > 2).

Proof. By induction onk. The casek = 2 is trivial

(pk−1 − 1)!′ = [1 · 2 . . . (pk−2 − 1)]′[(pk−2 + 1) · · · (pk−2 + pk−2 − 1)]′ · · ·
[((p− 1)pk−2 + 1) · · · (pk−1 − 1)]′.
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The first square bracket is−1 + n1p
k−2 modpk−1 by induction, i.e. it is−1 + n1p

k−2 +
cpk−1 modpk (for some integerc), a quantity we denote bya. The second square bracket
is a + pk−2(pk−2 − 1)!′S1(p

k−2)modpk. SinceS1(p
k−2) ≡ 0 modpk−2 by Lemma A.2

(p �= 2), this is justamodpk if k > 3. (Fork = 3, a trailingp2 · const would not affect the
ultimate conclusion.) All remaining brackets are alsoamodpk. Hence

(pk−1 − 1)!′ ≡ ap ≡ (−1 + n1p
k−2)p ≡ −1 + n1p

k−1 ≡ (−1 + n1p)
pk−2

modpk.

For p = 2, the anchor is atk = 4 : (p3 − 1)!′ = 1 3 5 7 ≡ 1 + 23 modp4. So the last
line readsap ≡ 1 + pk−1 modpk. Since we only haveS1(p

k−2) ≡ 0 modpk−3, there is a
trailing p2k−5, which is fine for the induction withk ≥ 5. �

Corollary A.2.

(pk − 1)!′ ≡ −1 modpk (p > 2),

and1 modpk for p = 2.

Proof. LHS = [1 . . . (pk−1 − 1)]′[(pk−1 + 1) . . . (pk−1 +pk−1 − 1)]′ · · · [((p− 1)pk−1 +
1) · · · (pk−1)]′. By the previous lemma, the first square bracket yields(p−1)!p

k−2
(p > 2),

while the second yields the same pluspk−1(p−1)!S1(p) (which is 0 modpk), and all other
square brackets yield the same. In all we have(p − 1)!p

k−1 ≡ (−1 + n1p + · · · )pk−1 ≡
−1 modpk (or +1 for p = 2). �

The same method of proof easily yields the following proposition.

Proposition A.2. For primep and integersk ≥ l we have

(pk − 1)!′ ≡ −1 modpl (p > 2),

and1 modpl for p = 2.

There is no explicit formula for(p − 1)! modp2, i.e. the integern1 in (p − 1)! ≡
−1+n1pmodp2 is no evident function ofp. In Hardy and Wright, one will find a formula
reducing the factorial to terms involvingp − 1/2!. Also, for modp3, the recent literature
exhibits ways to reduce the factorial to complicated terms involving the class number ofp.
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